ECOLOGICAL AND BIOLOGICAL ASPECTS OF DISRUPTION OF THE HOMEOSTASIS OF THE MAMMALIAN ORGANISM UNDER THE CONDITIONS OF ACTION OF VIPERA BERUS BERUS AND VIPERA BERUS NIKOLSKII VENOM

Authors

DOI:

https://doi.org/10.32782/2786-5681-2023-4.01

Keywords:

ecosystems, biotic factor, vipers, small intestine, toxins, structural changes

Abstract

The study of the ecological and biological aspects of the violation of the homeostasis of the mammalian organism under the influence of reptile poison has a significant impact on the formation and course of various forms of connections in ecosystems. It is an important biotic factor of the environment and performs several ecological functions. Scientists have found that the best-studied poisonous animals are snakes, of which, out of more than 3.800 different species, only a certain number are highly poisonous. The Viperidae family (Viperidae) includes 101 species of poisonous snakes. In Europe Vipera ammodytes, Vipera aspis, Vipera berus, Vipera latastei, Vipera seoanei and Vipera ursinii are the most dangerous species, their bites cause severe poisoning. In Ukraine, the genus Vipera is represented by the steppe viper (Vipera renardi (Cristoph, 1861)) and two subspecies of the common viper (Vipera berus (Linnaeus, 1758)) – Vipera berus berus and Nikolsky’s viper (Vipera berus nikolskii, Vedmederja Grubant et Rudaeva, 1986). Therefore, the study of the ecological and biological aspects of the violation of the homeostasis of the mammalian organism under the conditions of the action of the poison of the common viper and Nikolsky’s viper within the borders of our country is a complex and multifaceted process that covers different scientific directions. Currently, the mechanisms of damage to various organs and systems of animals and humans under the action of specific components of their toxins remain open. Therefore, the study of the mechanisms of action of viper venom, as well as the development and implementation of a set of measures to reduce the negative impact of their venom on the body of mammals, remain relevant. The purpose of the research is to identify signs of damage to the small intestine of rats under the conditions of the action of viper (Vipera berus) and Nikolskii (Vipera berus nikolskii) venom. The experiment was conducted on 20 white male rats. When studying rats, they were divided into two groups – control and experimental. Poisoning was modeled by intraperitoneal administration of common viper and Nikolsky’s viper venom to experimental group rats at a dose of ED50 of 0.972 μg/g. Histological preparations were examined on a SEO SCAN light microscope, images were processed using a Vision CCD camera with an available system for displaying images on a computer monitor. When examined, it was found that severe intoxication of the body with the venom of Vipera berus berus and Vipera berus nikolskii causes extensive destructive-dystrophic changes in the wall of the empty intestine, along with significant stromal-vascular disorders. Venomous hemotoxins increase the permeability of the vascular wall, altering the processes of intravascular coagulation, which leads to disseminated intravascular coagulation (DIC syndrome) and irreversible degeneration of the structures of the small intestine in the experiment.

References

Горальський Л.П., Хомич В.Т., Кононський О.І. Основи гістологічної техніки і морфо-функціональні методи досліджень у нормі та при патології : навчальний посібник. Житомир : «Полісся», 2005. 288 с.

Добреля Н.В., Бойцова Л.В., Данова І.В. Правова база для проведення етичної експертизи доклінічних досліджень лікарських засобів з використанням лабораторних тварин. Фармакологія та лікарська токсикологія. 2015. № 2. С. 95–100.

Мудрак О.В., Маєвський О.Є., Парфенюк А.І., Ткач Є.Д., Тертична О.В. Еколого-біологічне значення дії отрути гадюк на гомеостаз ссавців. Агроекологічний журнал. 2023. № 1. С. 76–83. DOI: https://doi.org/10.33730/2077-4893.1.2023.276730.

Мудрак О.В., Слєпцова І.В. Особливості впливу біотичних чинників середовища на організм ссавців. Агро-екологічний журнал. 2022. № 3. С. 160–166. DOI: https://doi.org/10.33730/2077-4893.3.2022.266421.

Alekseeva A.S., Tretiakova D.S., Chernikov V.P. et al. Heterodimeric Vipera nikolskii phospholipases A2 induce aggregation of the lipid bilayer. Toxicon. 2017. Vol. 133. P. 169–179. DOI: https://doi.org/10.1016/j.toxicon.2017.05.015.

Amazonas D.R., Portes-Junior J.A., Nishiyama-Jr M.Y. et al. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics. 2018. Vol. 181. P. 60–72. DOI: https://doi.org/10.1016/j.jprot.2018.03.032.

Cesar P.H.S., Braga M.A., Trento M.V.C. et al. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets. 2019. Vol. 20 (4). P. 465–477. DOI: https://doi.org/10.2174/13894501196661022154737.

Crowther J.R. The ELISA guidebook. Methods in Molecular Biology. 2000. Vol 149. Сh. III–IV. P. 1–413.

Czajka U., Wiatrzyk A. and Lutynska A. Mechanism of Vipera berus venom activity and the principles of antivenom administration in treatment. Przegl Epidemiol. 2013. Vol. 67 (4). P. 641–646.

Dyachenko I.A., Murashev A.N., Andreeva T.V. et al. Analysis of nociceptive effects of neurotoxic phospholipase A2 from Vipera nikolskii venom in mice. J Venom Res. 2013. Vol. P. 1–4.

Er O., Eksin H.M., Göcmen B. Ayşe Nalbantsoy. et al. Investigation of Vipera Anatolica Venom Disitegrin via Intacellular Uptake with Radiolabeling Study and Cell-Based Electrochemical Biosensing Assay. Appl Biochem Biotechnol. 2019. Vol. 187 (4). P. 1539–1550. DOI: https://doi.org/10.1007/s12010-018-2872-6.

Hadar G., Kelmer E., Segev G. et al. Protein C activity in dogs envenomed by Vipera palaestinae. Toxicon. 2014. Vol. 87. P. 38–44. DOI: https://doi.org/10.1016/j.toxicon.2014.05.010.

Hummel В. Canadian Journal of Biochemistry and Physiology. 1956. Vol. 37. P. 1393–1995.

Kryukova E.V., Potapenko A.S., Andreeva T.V. et al. Dimeric Disintegrins from the Steppe Viper V. ursinii Venom. Doll Biochem Biophys. 2019. Vol. 488 (1). P. 338–341. DOI: https://doi.org/10.1134/S1607672919050132.

Latinović Z., Leonardi A., Koh C.Y. et. al. The Procoagulant Snake Venom Serine Protease Potentially Having a Dual, Blood Coagulation Factor V and X-Activating Activity. Toxins (Basel). 2020. Vol. 12(6). P. 358. DOI: https://doi.org/10.3390/toxins12060358.

Latinović Z., Leonardi A., Jernej Šribar J. et. al. Venomics of Vipera berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: Therapeutic implications. J Proteomics. 2016. Vol. 146. P. 34–47. DOI: https://doi.org/10.1016/j.jprot.2016.06.020.

Long C., Liu M., Tian H. et al. Potential Role of Platelet-Activating C-Type Lectin-Like Proteins in Viper Envenomation Induced Thrombotic Microangiopathy Symptom. Toxins (Basel). 2020. Vol. 12 (12). P. 749. DOI: https://doi.org/10.3390/toxins12120749.

Palamarchuk M., Bobr A., Mudrak A. et al. Proteolytic Homeostasis in the Tissue of the Spleen and the Heart of Rats Injected with the Venom of Vipera berus berus and Vipera berus nikolskii. Current Applied Science and Technology. 2023. Vol. 23(6). P. 1–13. DOI: https://doi.org/10.55003/cast.2023.06.23.015.

Raksha N., Vovk T., Halenova T. et al. Influence of Vipera berus berus and Vipera berus nikolskii venom on protein-peptide profile in the liver, kidneys and small intestine of rats. Current Topics in Peptide & Protein Research. 2022. Vol. 23. P. 63–72. URL: https://www.scopus.com/record/display.uri?eid=2-s2.085150524412&origin=inward&txGid=8afab279052d5ea4c982f449fc4370a5.

Spolaore B., Ferandez J., Lomonte B. et. al. Enzymatic labelling of snake venom phospholipase A2 toxins. Toxicon. 2019. Vol. 170. P. 99–107. DOI: https://doi.org/10.1016/j.toxicon.2019.09.019.

Teixeira C., Fernandes C.M., Leiguez E. and Chudzinski-Tavassi A.M. Inflammation Induced by Platelet-Activating Viperid Snake Venoms: Perpectives on Thromboinflammation. Front Immunol. 2019. Vol. 10. P. 2082. DOI: https://doi.org/10.3389/fimmu.2019.02082.

Ullah A., Masood R., Ali I. et. al. Thrombin-like enzymes from snake venom: structural characterization and mechanism of action. Int J Biol Macromol. 2018. Vol. 114. P. 788–811. DOI: https://doi.org/10.1016/j.ijbiomac.2018.03.164.

Zinenko O., Tovstukha I. and Korniyenko Y. PLA2 Inhibitor Varespladib as an Alternative to the Antivenom Treatment for Bites from Nikolsky’s Viper Vipera berus nikolskii. Toxins (Basel). 2020. Vol. 12 (6). P. 356. DOI: https://doi.org/10.3390/toxins12060356.

Published

2023-10-23

Most read articles by the same author(s)